Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Biol Macromol ; 164: 4022-4031, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-739832

ABSTRACT

Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.


Subject(s)
Antigens, Dermatophagoides/metabolism , Arthropod Proteins/metabolism , Cysteine Endopeptidases/metabolism , Glycoproteins/metabolism , Immunomodulation , Phosphoproteins/metabolism , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Calcium/metabolism , Calcium Signaling , Cell Line , Cysteine Endopeptidases/immunology , Cysteine Proteinase Inhibitors/pharmacology , Cytokines/metabolism , Glycoproteins/pharmacology , Humans , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Mice , Phosphoproteins/pharmacology , Proteolysis/drug effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL